High Moment Partial Sum Processes of Residuals in Garch Models

نویسندگان

  • Hao Yu
  • H. YU
چکیده

In this paper we construct high moment partial sum processes based on residuals of a GARCH model when the mean is known to be 0. We consider partial sums of kth powers of residuals, CUSUM processes and self-normalized partial sum processes. The kth power partial sum process converges to a Brownian process plus a correction term, where the correction term depends on the kth moment μk of the innovation sequence. If μk = 0, then the correction term is 0 and, thus, the kth power partial sum process converges weakly to the same Gaussian process as does the kth power partial sum of the i.i.d. innovations sequence. In particular, since μ1 = 0, this holds for the first moment partial sum process, but fails for the second moment partial sum process. We also consider the CUSUM and the self-normalized processes, that is, standardized by the residual sample variance. These behave as if the residuals were asymptotically i.i.d. We also study the joint distribution of the kth and (k + 1)st self-normalized partial sum processes. Applications to change-point problems and goodness-of-fit are considered, in particular, CUSUM statistics for testing GARCHmodel structure change and the Jarque– Bera omnibus statistic for testing normality of the unobservable innovation distribution of a GARCH model. The use of residuals for constructing a kernel density function estimation of the innovation distribution is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...

متن کامل

مدل‌سازی و پیش‌بینی نوسانات بازار سهام با استفاده از مدل انتقالی گارچ مارکف

  In this study we compare a set of Markov Regime-Switching GARCH models in terms of their ability to forecast the Tehran stock market volatility at different time intervals. SW-GARCH models have been used to avoid the excessive persistence that usually found in GARCH models. In SW-GARCH models all parameters are allowed to switch between a low or high volatility regimes. Both Gaussian and fat-...

متن کامل

Heavy Tail Behavior and Parameters Estimation of GARCH (1, 1) Process

In practice, Financial Time Series have serious volatility cluster, that is large volatility tend to be concentrated in a certain period of time, and small volatility tend to be concentrated in another period of time. While GARCH models can well describe the dynamic changes of the volatility of financial time series, and capture the cluster and heteroscedasticity phenomena. At the beginning of ...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Fitting an Error Distribution in Some Heteroscedastic Time Series Models1 by Hira L. Koul

This paper addresses the problem of fitting a known distribution to the innovation distribution in a class of stationary and ergodic time series models. The asymptotic null distribution of the usual Kolmogorov–Smirnov test based on the residuals generally depends on the underlying model parameters and the error distribution. To overcome the dependence on the underlying model parameters, we prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006